Agua desordenada

Es bien sabido por todos –hasta por los niños pequeños- que la temperatura de ebullición del agua es de unos 100ºC. El punto de ebullición es la temperatura a la cual la presión de vapor del líquido estudiado iguala la presión de vapor del medio en el que se encuentra. Vamos, la temperatura a la que el líquido pasa a gas. Sin embargo, también es sabido que los líquidos se evaporan antes de llegar a su punto de ebullición. Y menos mal. Porque como los seres vivos tuviéramos que perder calor evaporando agua a 100ºC… Pues bien, ¿cómo es esto posible? O, ¿por qué sucede esto?

images (3)

Si observamos un líquido –pongamos por caso el agua- a nivel molecular, encontraremos eso, moléculas, vibrando y moviéndose. En el interior, todo es paz y felicidad, pero en la superficie, como ya comentamos una vez, no todo es tan bonito. Las moléculas se ven sometidas a una tensión que “las mantiene atadas” a ella. Por otro lado, hemos de conocer algún concepto básico de termodinámica. Y es el siguiente. Los cuerpos tienden a viajar a potenciales menores. Igual que una pelota cae hacia abajo –el potencial gravitatorio aumenta con la altura sobre la superficie terrestre- e igual que una carga positiva se ve atraída por una negativa. Todos tratan de disminuir su energía. Pues existe un concepto similar a estos llamado potencial químico, que tiene que ver con la composición de un sistema, la concentración de las distintas sustancias, etc. En general, en la vida cotidiana, el potencial químico del agua líquida es mayor que el del aire, por lo cual las partículas intentarán escapar al ambiente. Y, entonces, ¿por qué no se nos evapora el agua instantáneamente al igual que una piedra cae por atracción gravitatoria? Esto no sucede de manera tan obvia y sencilla puesto que, como acabamos de comentar, existe una fuerza que mantiene firmes a las moléculas de la superficie. De este modo, solo conseguirán pasar al medio gaseoso aquellas que, aleatoriamente, por movimientos moleculares, logren en un cierto instante escapar del líquido para no volver, ya que supondría ir hacia potenciales mayores. Además, al aumentar la temperatura, incrementamos también la energía cinética de las partículas, lo cual facilitará la fuga de pequeños H2O.

vapp3

Este fenómeno –o conjunto de fenómenos- está íntimamente relacionado con el Segundo Principio de la Termodinámica –hay que ponerlo en mayúsculas porque un nombre así lo merece, digo yo-. Existen diferentes enunciados pero todos se pueden resumir en que la entropía del Universo tiende a aumentar. ¿Qué es eso de la entropía? La forma más fácil de definirla y entenderla es como el grado de desorden de un sistema. Y siempre aumenta –o se mantiene constante en el caso de procesos reversibles, en el mundo imaginario de los planos inclinados 30º y sin fricción…-. Imaginemos por ejemplo una habitación vacía –vacía quiere decir vacía-. Imaginemos ahora que metemos un puñado de partículas que se pueden mover libre y aleatoriamente por todo el recinto. ¿Se quedarán todas apelotonadas y ordenadas en una esquina o se repartirán homogéneamente por el espacio? Claramente se dispersarán. Y esto no es algo puramente físico sino más bien matemático, de estadística. Realmente existe la posibilidad de que las partículas se acumulen en una región, pero lo más probable es que se repartan, que se desordenen –el Cosmocaixa, aquí en Barcelona, está repleto de juguetes para hacer experimentos y uno consiste en observar esto [web del museo: http://obrasocial.lacaixa.es/nuestroscentros/cosmocaixabarcelona/cosmocaixabarcelona_es.html]-. Exactamente ocurre lo mismo con el agua que pasa a vapor: el mayor desorden tendrá lugar en el estado gaseoso, en el cual las partículas bailan libremente.

El Segundo Principio es un tema muy interesante, fundamentado en la mecánica estadística y la teoría de la información, al cual probablemente volveremos otro día. Por hoy creo que es suficiente =)

 

Una última reflexión para este mes en el que no hay crisis ni calentamiento global, sino solo fútbol: are we human o are we dancer?

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s